

 ARL-TR-7546 ● DEC 2015

 US Army Research Laboratory

Interference Cancellation System Design Using
GNU Radio

by Jan Paolo Acosta

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7546 ● DEC 2015

 US Army Research Laboratory

Interference Cancellation System Design Using
GNU Radio

by Jan Paolo Acosta
Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

December 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Interference Cancellation System Design Using GNU Radio
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Jan Paolo Acosta
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL SER U
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7546

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report contains information on how to design an interference cancellation system using Ettus software-defined radios and
the GNU Radio software development kit.

15. SUBJECT TERMS

interference cancellation, software-defined radio

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

24

19a. NAME OF RESPONSIBLE PERSON

Jan Paolo Acosta
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-1530
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution unlimited.

iii

Contents

List of Figures iv

1. Introduction 1

2. Development 1

2.1 Hardware Platform 1

2.2 Software Platform 3

2.3 Adaptive Filter Algorithm 3

3 Performance 4

3.1 Test Setup 4

3.2 Test Parameters 5

3.3 Test Results 5

4. Summary and Conclusion 8

5. References 9

Appendix. GNURadio C++ Code 11

List of Symbols, Abbreviations, and Acronyms 17

Distribution List 18

Approved for public release; distribution unlimited.

iv

List of Figures

Fig. 1 Basic interference cancellation scheme ...1

Fig. 2 Ettus USRP B210 ...2

Fig. 3 Interference cancellation test setup ..4

Fig. 4 Adaptive filter length of 1 ..6

Fig. 5 Adaptive filter length of 2 ..7

Fig. 6 Adaptive filter length of 3 ..7

Fig. 7 Adaptive filter length of 5 ..8

Approved for public release; distribution unlimited.

1

1. Introduction

Interference cancellation is a technique mainly used to reduce co-channel
interference. The basic scheme for interference cancellation is shown in Fig. 1. This
figure shows that a desired signal is corrupted by interference. The primary signal
contains both the desired signal s(n) and the noise component n2(n). The noise
component is a function of the reference passing through a channel with an impulse
response w(n). A reference of the noise component n1(n) is then fed to a finite
impulse response (FIR) filter that adaptively tunes using the difference between the
adaptive filter output and the primary signal. The impulse response of the adaptive
filter will try to match the impulse response w(n). If the output of the adaptive filter
is equal to the noise component of the primary signal, then the error of the adaptive
filter is equal to the desired signal s(n).

Fig. 1 Basic interference cancellation scheme

2. Development

2.1 Hardware Platform

To reduce development time, commercial-off-the-shelf (COTS) radios sold by
National Instruments subsidiary Ettus Research were used as a development
platform. Interference cancellers at minimum require 2 inputs and 1 output. Ettus
Research sells a number of software-defined radios (SDRs) that are capable of
meeting this requirement. These SDRs are also used with the GNU Radio software
development kit (SDK), an open source platform that is available for free in Linux.

The SDR chosen for testing is the universal software radio peripheral (USRP) B210
and is shown in Fig. 2.

Approved for public release; distribution unlimited.

2

Fig. 2 Ettus USRP B210

According to Ettus Research, the B210 has the following specifications:

1) Fully integrated, 2-channel device with continuous radio frequency (RF)
coverage from 70–6 GHz.

2) Full duplex, multiple input multiple output (MIMO) (2 transmit and 2
receive) operation with up to 56 MHz of real-time bandwidth (61.44 MS/s
quadrature)

3) USB 3.0 connectivity

4) GNU Radio and OpenBTS support

5) Open and reconfigurable Spartan 6 XC6SLX150 field-programmable gate
array (FPGA)

6) Analog-to-digital converter (ADC) and digital-to-analog converter (DAC)
resolution of 12 bits.

7) Receive noise figure of less than 8 dB

Based on the USRP B210 specifications, the theoretical interference cancellation
performance achievable is 6 𝑑𝑑𝑑𝑑 × 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 72 𝑑𝑑𝑑𝑑.

Approved for public release; distribution unlimited.

3

2.2 Software Platform

Signal processing algorithms were developed using the GNU Radio. GNU Radio
is a free and open source SDK that provides signal processing blocks to implement
software radios. It is widely used in hobbyist, academic, and commercial
environments to support both wireless communications research and real-world
radio systems. Using the GNU Radio simplifies the development process and
allows testing of different of hardware platforms with only minor changes in
coding.

The signal processing algorithms were developed in Ubuntu 14.04 and the GNU
Radio SDK version is 3.7.7.1. The universal hardware driver (UHD) version used
for the development is 003.008.004.

2.3 Adaptive Filter Algorithm

The adaptive algorithm that was used to change the FIR filter coefficients is the
normalized least means squares (NLMS). NLMS is real-time recursive algorithm
that adapts the FIR filter for every new sample received. The algorithm minimizes
the mean square error of the difference between the noise received by the primary
signal as shown on Fig. 1 and the reference noise.

The pseudocode for the normalized least means square algorithm implemented is
shown below.

For each n

 𝑦𝑦(𝑛𝑛) = � 𝒘𝒘𝐻𝐻(𝑘𝑘)𝑥𝑥(𝑛𝑛 − 𝑘𝑘)𝑛𝑛
𝑘𝑘=0 . (1)

 e(n) = d(𝑛𝑛) − y(n) (2)

 wj+1(n + 1) = wj(n) − µ 𝑒𝑒∗𝑛𝑛(𝑛𝑛)

�|𝑥𝑥(𝑛𝑛)|�2+𝛼𝛼
 (3)

where w is the FIR filter weight, x is the noise reference input, d is the primary
input that contains the desired signal as well as the noise component, µ is the
learning rate, and 𝛼𝛼 is a small number that is greater than 0. 𝛼𝛼 ensures that the
algorithm is stable in the event �|𝑥𝑥(𝑛𝑛)|�

2
= 0. The algorithm was designed to have

an 𝛼𝛼 of 0.001, which guarantees stability but also minimizes its error contribution
to the updated filter coefficient.

Equation 1 is the output of the FIR filter. The second equation finds the difference
between the primary input and the output of FIR filter. If the output of the adaptive
filter is equal to the noise component within the primary signal, then the error

Approved for public release; distribution unlimited.

4

should only contain the desired signal. If not, Eq. 3 constantly tunes the FIR filter
weights at a rate of µ. The condition for µ must satisfy the following:

0 < µ < 1

The learning rate can be arbitrarily chosen and largely depends on the type of
environment in which the application is being used and what type of signals are
involved. Theoretically, small values of µ increase the amount of time the algorithm
takes to reach the optimal solution but produce fewer estimation errors. Larger
values have the opposite effect and increase the stability of the algorithm.

The algorithm was developed in GNU Radio using C++. The code is available in
the Appendix.

3 Performance

3.1 Test Setup

The performance of the interference cancellation system was evaluated in a closed-
loop coaxial cable environment for initial testing. The diagram of the test setup is
shown in Fig. 3.

Fig. 3 Interference cancellation test setup

The signal generator generates a single tone signal that is fed into an RF splitter.
The outputs of the RF splitter is then connected to each of the receive inputs of the
USRP B210. The USRP B210 feeds all the samples to the laptop into the GNU
Radio framework for signal processing. The laptop also shows the performance of
the adaptive filter signal processing block written by plotting the Fourier transform
in real time. The spectrum plots were captured to measure cancellation
performance. The interference canceller was tested for various filter lengths from
1, 2, 3, and 5.

Approved for public release; distribution unlimited.

5

The splitter, Mini-Circuits ZFRSC-42-S+, and cable path incurs a loss of 7 dB at
300 MHz. When the B210 is configured in MIMO configuration, the B210 incurs
another 8 dB of loss.

3.2 Test Parameters

The following test settings were used to configure the signal generator and the
interference canceller.

Signal Generator:

1) Frequency: 300 MHz

2) Signal Type: Single Tone

3) Modulation Off

4) RF Amplitude: –60 dBm

GNU Radio Settings:

Adaptive Filter Parameters

1) Sampling Rate: 64 kHz

2) Filter Length: 1, 2, 3, and 5

3) Learning Rate µ = 0.01

UHD Source

1) Sampling Rate: 64 kHz

2) Center Frequency: 300 MHz

3) Clock Frequency: 30.72 MHz

3.3 Test Results

The amount of cancellation performance was recorded by measuring the spectrum
at the output of the adaptive filter. The measurements were taken at various filter
lengths of 1, 2, 3, and 5. As shown in Figs. 4, 5, 6, and 7, the best cancellation
performance achieved is when the adaptive filter length is 1. Figure 4 shows that
the cancellation performance is achieved is 120 dB. The result is somewhat
misleading because the noise floor of the B210 is at –125 dBm, and therefore, the
realistic cancellation performance is −60 − 8 − 7 − (− 125) = 50 𝑑𝑑𝑑𝑑. The
output of the filter also has a flat spectrum, indicating that the filter does not
generate errors in performance. Filter lengths 2, 3, and 5 have noise suppression

Approved for public release; distribution unlimited.

6

levels of 40 dB at the center frequency but generate an additional frequency
response that increases the noise in other bands. The amount of noise generated can
be as large 15 dB above the noise floor.

Fig. 4 Adaptive filter length of 1

Approved for public release; distribution unlimited.

7

Fig. 5 Adaptive filter length of 2

Fig. 6 Adaptive filter length of 3

Approved for public release; distribution unlimited.

8

Fig. 7 Adaptive filter length of 5

The results of the performance of the interference canceller is not surprising. The
filter length of 1 performs best because the test setup is a closed-loop setup with
cables. The adaptive filter weights represent the impulse response of the test setup.
In a closed-loop setup, the signal does not generate any delayed reflections that
lengthen the impulse response of the propagation path. It is also possible that the
reflections generated are below the noise floor of the radio and cannot be
represented by the limited dynamic range of the radio. When the filter length is
greater than 1 in a closed-loop system, the adaptive filter generates estimation errors
that increase the noise at the output.

4. Summary and Conclusion

The performance of an interference cancellation prototype developed using GNU
Radio and the Ettus radio B210 has been measured. The system is able to achieve
cancellation levels up to 50 dB when the filter length is properly chosen.

The performance of the system can be further improved by using more expensive
models from Ettus Research. The biggest limitation on cancellation performance
ADCs is the B210. Other Ettus radios such as the N210 and the X310 have high
performance 14-bit ADCs and a greater dynamic range.

Approved for public release; distribution unlimited.

9

5. References

Rondeau TW. On the GNU Radio Ecosystem. in Opportunistic Spectrum Sharing
and White Space Access: The Practical Reality. Holland O, Bogucka H,
Medeisis A., Ed. New York: Wiley, 2015.

Haykin SS. Adaptive Filter Theory. Englewood Cliff’s, NJ: Prentice Hall, second
ed., 1991.

Approved for public release; distribution unlimited.

10

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution unlimited.

11

Appendix. GNURadio C++ Code

Approved for public release; distribution unlimited.

12

A-1 Adaptive Filter C++ Header File

#ifndef INCLUDED_ADAPTIVEFILTER_NLMS_IMPL_H
#define INCLUDED_ADAPTIVEFILTER_NLMS_IMPL_H

#include <AdaptiveFilter/nlms.h>
#include <gnuradio/filter/fir_filter.h>
#include <gnuradio/math.h>
#include <vector>
#include <stdexcept>
#include <gnuradio/gr_complex.h>

namespace gr {
 namespace AdaptiveFilter {

 class nlms_impl : public nlms, filter::kernel::fir_filter_ccc
 {
 private:

 gr_complex d_error;
 gr_complex d_FilterOutput;
 gr_complex d_norm;

 std::vector<gr_complex> d_new_taps;
 float d_mu;
 float d_FilterLen;

 bool d_updated;

 protected:
 gr_complex error(const gr_complex &in);
 void update_tap(gr_complex &tap, const gr_complex &in);

 public:
 nlms_impl(float mu, int FilterLen);
 ~nlms_impl();

 void set_taps(const std::vector<gr_complex> &taps);
 std::vector<gr_complex> taps() const;

 float gain() const
 {
 return d_mu;
 }

Approved for public release; distribution unlimited.

13

 void set_gain(float mu)
 {
 if(mu < 0.0f || mu > 1.0f) {
 throw std::out_of_range("NLMS::set_gain: Gain value must be in
[0,1]");
 }
 d_mu = mu;
 }

 // Where all the action really happens
 int work(int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items);
 };

 } // namespace AdaptiveFilter
} // namespace gr

#endif /* INCLUDED_ADAPTIVEFILTER_NLMS_IMPL_H */

Approved for public release; distribution unlimited.

14

A-2 Adaptive Filter C++ Source File

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/io_signature.h>
#include "nlms_impl.h"

namespace gr {
 namespace AdaptiveFilter {

 using namespace filter::kernel;

 nlms::sptr
 nlms::make(float mu, int FilterLen)
 {
 return gnuradio::get_initial_sptr
 (new nlms_impl(mu, FilterLen));
 }

 /*
 * The private constructor
 */
 nlms_impl::nlms_impl(float mu,int FilterLen)
 : gr::sync_block("nlms",
 gr::io_signature::make(2, 2, sizeof(gr_complex)),
 gr::io_signature::make(1, 1, sizeof(gr_complex))),
 fir_filter_ccc(1, std::vector<gr_complex>(FilterLen, gr_complex(0,0))),
 d_new_taps(FilterLen, gr_complex(0,0)),
 d_updated(false), d_error(gr_complex(0,0))
 {
 set_gain(mu);
 if (FilterLen > 0){
 d_taps[0] = 1.0;
 d_new_taps[0]= 1.0;
 }
 fir_filter_ccc::set_taps(d_new_taps);
 set_history(FilterLen);
 }

 /*
 * Our virtual destructor.
 */
 nlms_impl::~nlms_impl()
 {

Approved for public release; distribution unlimited.

15

 }
 void
 nlms_impl::set_taps(const std::vector<gr_complex> &taps)
 {
 d_new_taps = taps;
 d_updated = true;
 }

 std::vector<gr_complex>
 nlms_impl::taps() const
 {
 return d_taps;
 }

 void
 nlms_impl::update_tap(gr_complex &tap, const gr_complex &in)
 {
 tap = std::conj(tap);
 tap += d_mu*std::conj(d_error)*in/(d_norm+.0001f);
 }

 gr_complex
 nlms_impl::error(const gr_complex &sig)
 {
 gr_complex error = sig - d_FilterOutput;
 return error;
 }

 int
 nlms_impl::work(int noutput_items,
 gr_vector_const_void_star &input_items,
 gr_vector_void_star &output_items)
 {
 const gr_complex *ref = (const gr_complex *) input_items[0];
 const gr_complex *sig = (const gr_complex *) input_items[1];
 gr_complex *out = (gr_complex *) output_items[0];

 if(d_updated) {
 d_taps = d_new_taps;
 set_history(d_taps.size());
 d_updated = false;
 return 0; // history requirements may have changed.
 }

 size_t k, l = d_taps.size();

Approved for public release; distribution unlimited.

16

 size_t m = d_new_taps.size();

 for (int i = 0; i < noutput_items; i++) {
 d_norm = gr_complex(0.0f,0.0f);
 d_FilterOutput = gr_complex(0.0f,0.0f);
 d_FilterOutput = filter(&ref[i]);

 d_error = error(sig[i]);
 //Calculate the norm
 for(k = 0; k < l; k++) {
 d_norm += ref[i - k]*std::conj(ref[i - k]);
 }

 d_error = error(ref[i]);
 out[i] = d_error;

 for(k = 0; k < l; k++) {
 // Update tap locally from error.
 update_tap(d_taps[k], ref[i-k]);
 // Update aligned taps in filter object.
 fir_filter_ccc::update_tap(std::conj(d_taps[k]), k);
 }
 }

 return noutput_items;
 }

 } /* namespace AdaptiveFilter */
} /* namespace gr */

Approved for public release; distribution unlimited.

17

List of Symbols, Abbreviations, and Acronyms

ADC analog-to-digital converter

ARL US Army Research Laboratory

COTS commercial-off-the-shelf

DAC digital-to-analog converter

FIR finite impulse response

FPGA field-programmable gate array

MIMO multiple input multiple output

NLMS normalized least means squares

RF radio frequency

SDK software development kit

SDR software-defined radio

UHD universal hardware driver

USRP universal software radio peripheral

Approved for public release; distribution unlimited.

18

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL SER U
 J ACOSTA
 A SULLIVAN

	List of Figures
	1. Introduction
	2. Development
	2.1 Hardware Platform
	2.2 Software Platform
	2.3 Adaptive Filter Algorithm

	3 Performance
	3.1 Test Setup
	3.2 Test Parameters
	3.3 Test Results

	4. Summary and Conclusion
	5. References
	Appendix. GNURadio C++ Code
	A-1 Adaptive Filter C++ Header File
	A-2 Adaptive Filter C++ Source File

	List of Symbols, Abbreviations, and Acronyms

